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Abstract—Recent studies have shown that, experiencing the
appropriate lighting environment in our day-to-day life is
paramount, as different types of light sources impact our mental
and physical health in many ways. Researchers have intercon-
nected daylong exposure of natural and artificial lights with
circadian health, sleep and productivity. That is why having
a generalized system to monitor human light exposure and
recommending lighting adjustments can be instrumental for
maintaining a healthy lifestyle. At present methods for collecting
daylong light exposure information and source identification
contain certain limitations. Sensing devices are expensive and
power consuming and methods of classifications are either inac-
curate or possesses certain limitations. In addition, identifying
the source of exposure is challenging for a couple of reasons.
For example, spectral based classification can be inaccurate, as
different sources share common spectral bands or same source
can exhibit variation in spectrum. Also irregularities of sensed
information in real world makes scenario complex for source
identification. In this work, we are presenting a Low Power BLE
enabled Color Sensing Board (LPCSB) for sensing background
light parameters. Later, utilizing Machine learning and Neural
Network based architectures, we try to pinpoint the prime source
in the surrounding among four dissimilar types: Incandescent,
LED, CFL and Sunlight. Our experimentation includes 27
distinct bulbs and sunlight data in various weather/time of the
day/spaces. After tuning classifiers, we have investigated best
parameter settings for indoor deployment and also analyzed
robustness of each classifier in several imperfect situations. As
observed performance degraded significantly after real world
deployment, we include synthetic time series examples and
filtered data in the training set for boosting accuracy. Result
shows that our best model can detect the primary light source
type in the surroundings with accuracy up to 99.30% in familiar
and up to 90.25% in unfamiliar real world settings with enlarged
training set, which is much elevated than earlier endeavors.

Index Terms—Light Source Classifying, Low power sensing

I. INTRODUCTION

The role of lighting to human beings is not merely limited

to illumination, but also impacts a person physiologically and

psychologically [1], [2]. As a diurnal species, the periodicity

of light exposure throughout the entire day is crucial [3].

Researchers have examined the influence of light exposure

on human during different cycles of a day by studying heart

rate, cortisol, concentrated body temperature (CBT), fatigue,

and sleeping behavior [4]. Exacerbation of behavioral distur-

bances and the disrupted circadian sleep patterns have been

observed in people with dementia due to improper lighting

scenarios [5]. Anomalies like inadequacy or non-periodicity in

melatonin production, an event that is coupled with daylong

light exposure, has been found as one of the major offenders

for sleep disorders that affects 50 to 70 million adults and

one third of the senior population in the US [6], [7]. Not only

lighting parameters, but also lighting type, especially at night,

can suppress and delay the normal operation of a person’s

biological clock [8]. For example, avoiding blue enriched

sources (most present day LEDs) is recommended by health

professionals after sundown hours for quality sleeping [9].

Studies also show that careful lighting design can improve

healthiness among senior citizens, Alzheimer’s disease and

related dementia (ADRD) patients, and others [10]–[12].

Therefore, continuous monitoring of various types of light

exposure data throughout a day is imperative, particularly

at nursing homes and hospitals, where lighting schemes are

purposefully decorated for ensuring ambience and as a part of

treatment [13].

Commonly deployed devices for sensing light contain cer-

tain limitations. Acquiring light exposure statistics during a

whole day can be expensive, memory-intensive, highly power-

consuming and on top of that, sensors are mostly designed

to be wearable which adversely effects level of comfort and

ergonomics. Even when light sensors are deployed as an

immobile device, detection accuracy can vary based on sensor

placement, parameter selection, adopted classification model

and nature of classifiers’ training set. Unfortunately, present

studies cannot answer which classifier and what parameters

are best suited for indoor light classification.

Adopted classifiers till to date are trained only with stand-

alone sources, with limited examples and setups remained

non interrupted throughout data collection. However, in real

world, identifying environments can deviate from ideal sce-

nario in multiple ways. Modern day lighting architectures are

not isolated, rather have become dynamic and personalized

through blending sources of multiple types and specific fea-

tures, which creates a complex environment for specifying

the major contributing source. Classifiers that are trained with

limited examples will fail to identify source that lies outside

the training set. Also in reality, signal patterns can randomly

fluctuate during on-off/presence of noise around sources or

undesirable/unavoidable interruption during acquisition, like

obstruction between the source and the sensor due to human

movement. As classifiers are not familiarized with such signal

patterns, they tend to mis-classify at those adversaries and

accuracy falls below satisfactory level. Therefore, modifica-

tion of training data is a pre-requisite to get our classifiers
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Fig. 1: An illustration of a few analysis done in this paper.

From left to right a) Sensor placement, b) No of samples

for classification, c) Detecting prime source in multi-source

environment, d) Identifying light type at smart environments

acquainted and correctly classify sources in real world settings.

In this work, we have designed and developed a Bluetooth

Low Power (BLE) enabled color sensing board for acquiring

light exposure information for extended period and demon-

strated how recording only RGB information can be fruitful

identifying major source exposure at various times. This

smart device exploits very low memory, suitable for indoor

deployment and flexible to be shaped into wearable format if

required. Based on sensed information, it can calculate on-the-

spot lighting parameters like Lux Intensity (LI) and Correlated

Color Temperature (CCT), as well as provide data to distin-

guish major source in background off-board. After placing this

sensor at indoor atmospheres, we investigate the ideal distance

from light source for placing sensors and no of samples

needed, along with their dimensions for optimal classifying

performance. To find the best performing classifier, we have

studied multiple Machine Learning and Neural Network based

classifying methods and made comparative analysis of accu-

racy of those classifiers in ideal/non-ideal backgrounds like

multi-source/noisy/smart environments. Finally, we introduce

application of Time Series Generative Adversarial Network

(TimeGaN) to generate synthetic examples to familiarize light

sources outside training set. We have also designed and im-

plemented various length filters for recognizing sources from

irregular signal patterns. After introducing those methods, we

have observed elevated source identification accuracy in real

world setup. This study will be advantageous regarding indoor

deployment of light sensors for optimal performance, as well

as robust, power efficient and persistent identification of source

exposure in real world.

II. RELATED WORK

Source classification techniques till date has been primarily

relied on spectrum data from mini-spectrometers. C12666MA
mini-spectrometer from Hamamatsu electronics has been the

most favored which costs around $400, operates on 4.75-5.25

V range and consumes power around 30mW. A similar of its

kind, HPCS300P Mini Spectrometer (price around $500) uses

USB interface (500mA/5V-900mA/5V) to operate. Even, with

low cost lower resolution version, like TINYSA analyzer (only

$49), runs on battery allowing only 2/4 hours for portable

use. Mini-spectrometers from Pasco can operate on wire-

less mode, but again costly (around $450) for multi-location

mass deployment. Utilizing C12666MA mini-spectrometer,

non-visual impacts of light exposure was studied in modern

homes by identifying daily source exposure and recording

daily sleeping hours [14]. Spectrace, a wearable sensor for

spectrally-resolved personal light monitoring system was built

to recover a diversity of spectra at different bandwidths con-

sisting accelerometer and gyroscope to provide feedback of

the current light exposure [15]. Proposed sensor was claimed

to be low cost, small size to provide a high-accuracy result of

spectrum-specific light intensity [16]. Low-cost and portable

spectrometer using CMOS-based sensors was designed which

is able to detect wavelengths in a range from visible to NIR

region. Named AvaSpec-Mini2048CL spectrometer, different

types of electric lights, along with natural light source were

chosen for capturing class variation and MLP model was

used for data reconstruction. Prediction errors were calculated

for different indoor and outdoor conditions after comparing

with Wavego [17]. Fernandez [18] utilized RGB information

from TCS3414CS color sensor and ADJDS311 color sensor
to classify various artificial sources (34 LED, 16 incandescent

and 6 fluorescent sources) and selecting a model estimation of

Color Rendering Index (CRI) and Correlated Color Tempera-

ture (CCT). Ma, Bader and Oelman [19] did similar kind of

research with TSL2561, ISL29125 color sensors, AM1815CA,
POW11D2P solar cells and USB2000+ spectrometer, where

sensor data for Halogen, Fluorescent, LED and Incandescent

bulbs were collected via USB interface and I-V tracers and

KNN, SVM and Decision tree algorithms were utilised for

classification for the most part. It has been displayed that

even with higher intensity interference from other sources, ML

based approach can typify sources with only 62.5% outside

training specimens.

III. LIMITATIONS OF EARLIER APPROACHES

Indoor light characterization with spectrum analyzer is

high-priced and data acquisition process is intensely energy

and memory hungry. For real world deployment, cumulative

energy expenditure becomes significant for daylong operation.

Moreover, higher spectral resolution data throughout the day

may conglomerate that appeals humongous memory stack.

When our goal is metering the source type with common

lighting parameters, high resolution spectral information is not

quintessential.

Patients/senior citizens who have limited movement, car-

rying device for the whole day with other appliances may

offer discomfort and undesirable for gathering lighting aspects

at indoors. Where person spend most of his/her hours under

the roof, easy to install indoor smart sensors can uncover

their round the clock lighting exposure. IoT based flexible

RGB sensors should come into play. In addition to offering

wearability/mobility, they can be deployed as a fixed room

light sensor for accessing lighting information from practical

distances at low energy cost and operate for an extended period

without power/memory replacement.

When light sensors are carried by human, relative distance

between the source and sensor position is unmanageable. But

in case of indoor deployment, placements can be climacteric

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on January 09,2023 at 07:47:22 UTC from IEEE Xplore.  Restrictions apply. 



for elevated performance, which unfortunately, were not dis-

sected in earlier investigations.

Whether remotely installed or designed as a wrist-band

device, intelligence regarding number of samples and their

sizes are critical for classifiers to determine the source type,

where methodical studies are few and far between.

With spectrum analyzer, magnitude at a particular wave-

length and transient waveform shape were adopted for typi-

fying, which is inaccurate, as sources of different types share

common spectral range. Magnitude of the sensed parameters

can fluctuate based on the relative distance between the source

and the sensor and at last, data acquisition in real life cannot be

always conducted only during transient switch on/off phases.

When machine learning algorithms were called into play,

the training size chosen for experiments were too small to

draw any conclusion. Sometimes same sources with varying

intensities were trained with, which fails to encompass any

substantial portion of most common and evolved varieties

of bulbs available at market. Even Sunlight possess indoor

variations throughout the time of the day, weather and sur-

roundings, which can be misidentified if not acknowledged.

As a consequence, classifiers report near perfect accuracy

with familiar sources, but performs poorly after encountering

sources outside training set. Neural Networks (NN) along with

Time series based analysis should come into play for their

reputation in pattern recognition for unseen examples and seen

examples in non ideal scenarios.

Previous approaches of categorization were mostly based on

considering isolated single sources, whereas captured readings

may get influenced from another source or from any RGB

element’s presence near the sensor that can misdirect classifier

towards pinpointing wrong class. In modern indoor lighting,

sources keeps on/off based on person’s presence. This can

completely shatter the steady state RGB pattern and makes

classification task complicated.

IV. PROPERTIES FOR CLASSIFICATION AND EFFECTS

ROUND THE CLOCK

In this work, we have considered three most widely used

indoor bulbs with sunlight: Incandescent lamps, Compact

Fluorescent Light bulbs (CFLs) and Light Emitting Diodes

(LEDs)(figure 2. Radiation is generated through heating

tungsten filament for incandescent bulbs. CFL mostly offers

"cool white light" and spectrum exhibits certain spikes during

the startup phase [20]. Led delivers radiance over a wide

band of wavelengths, like soft white (2700K-3000K), cool

white (3100K-4000K), daylight (5000K-6000K) etc. Emissive

surfaces of LEDs are highly-concentrated, illuminance of

which can be 1000 times higher than recommended level [21].

Although sunlight covers the broadest spectrum, its nature

is dynamic, intensity and color components of light (wave-

lengths) change with the time of day, time of year, the weather

and the location on earth.

CFLs and LEDs may be energy efficient but emit more

unhealthy blue light that disrupts triggering the release of the

Fig. 2: 100 samples of sensed RGB values for each type
of light source (x-axis:sample no., y-axis: hex value): In-
candescent ("soft white", 40 W), CFL ("natural daylight",
13 W), Led ("soft white", 9 W), Sunlight (open, 12:45 pm)

biological stimulation [21]. Absorption of blue light compo-

nent changes with age and increases with light intensity. Bright

Sunlight is the most powerful source for blue enriched light

(upto 1,500 μW/cm2) can boost maintaining healthy sleeping

order, whereas LED computer screen with blue illuminance

around 30 μW/cm2 couple of hours before bed can promote

lower melatonin secretion [22]. That is why maintaining

daylong healthy light receptiveness through appropriate class

of light is imperative.
V. METHODOLOGY

To address power efficient elongated operation of light

sensing, we develop a low power color sensing board (LPCSB)

dedicated to sense lighting information from the near around

environment and transmit data in a wireless/local fashion.

Although there are multiple color sensors in the market, most

of them are not cost effective, are large dimensional, energy

inefficient and require to relay information to central hub for

further analysis mostly through wired connections. Our goal

was to develop small scale, low-cost, mobile, lightweight task

specific sensor, that is unobtrusive to already installed systems

in that surroundings and easy to deploy as smart room sensor

or as wearable systems in future. LPCSB advertises BLE pack-

ets containing RGB, clear value (related to intensity), color

temperature and lux information of a light source (calculated

from RGB values), which enables user to place the board in

inaccessible/unreachable areas, connect with BLE receivers

and then deliver sensed values as instructed. Moreover, the

system consumes extremely low power, as a result the power

source does not need to get replaced often which lowers

down the maintenance hazards. In addition, information can

be captured from a distance and analysed in any platform of

users choice (for example, smart watch or remote servers).

For classification, we use this board only as an advertiser to

advertise a BLE data packet containing ID, raw data (clear,

red, green, and blue) split into two bytes per color, color

temperature and lux of the measured light calculated from raw

rgb values and the number of the latest packet being advertised.
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Raw data measurements taken from the color sensor reveal

the amount of red, green, and blue components that compose

the unfiltered light. Utilizing RGB info, we calculate and

advertise LI and CCT of the measured light value from the

sensor [23].

We then collect data from 27 different bulbs (9 from each

of LED, Incandescent and CFL) for acquiring both inter-class

and intra-class variation of RGB values. To achieve true nature

of each light by minimizing influence from other sources, we

decide to carry out all the measurements (for artificial bulbs)

in a dark room. For collecting sunlight data, we expose sensor

to sun in diverse conditions and scenarios, which includes

taking data from sunrise to sunset, during heavy rainy, foggy

and drizzling days. Inconsistency of sunlight RGB information

may also derive from contrasting indoor conditions (location,

window glass material, with and without blinds etc.). To

accommodate them into our training set, we collect sunlight

data in different buildings and also in various corners of a

building.

Fig. 3: Violin plot depicts RGB values of different classes of
light source lie in common range which makes it difficult
to categorize based on cutoff intensity (Mean and Median
values are marked with white and black lines)

In practice, electromagnetic light waves experience reflec-

tions from nearby structures. Finally sensed complex signal,

deriving from contrasting scenarios and mixed with direct

and indirect components, simply do not follow inverse square

law of radiation and generates irregularity in RGB values. To

acknowledge magnitude variability and irregularity of RGB

features based of sensor placement, we capture artificial light

data at five different distances.

For analysis, we collect 500 samples for each observa-

tion. To determine optimal sample size for classification, we

divide our collection window size from 10 samples up to

125 samples. Figure 3 shows RGB distribution of all the

sources dealt in this study. As discovered, unalike sources

share common RGB spectra and magnitude, which turns it

problematic to differentiate solely based on RGB threshold. t-

SNE visualization of RGB values also reveals the fact that

dissimilar light sources are linearly inseparable (figure 4).

That’s why we investigate multiple Machine Learning(ML)

and Neural Network(NN) algorithms to distinguish each type

of source (shown in Table I). ML and NN models are in-

dependent of feature magnitude after scaling and capable of

non linear classification. As RGB signals contain resemblance

with image data (both are primarily three channel information),

Fig. 4: 2D tSNE plot of recorded RGB information reveals
linearly inseparability of source clusters

TABLE I: Methods of classification

Method Acronym Tuned Par./ Model Par.

Decision Tree DT criterion, max depth
Random Forest RF max depth, max features, min

samples leaf, min samples split,
n estimators

Gaussian Boost GB learning rate, max depth, min
samples leaf, min samples split,
n estimators

Naive Bias NB var smoothing
K Nearest
Neighbor

KNN metric, n neighbors,weights

Logistic
Regression

LR C parameter, penalty

Support
Vector
Machine

RBF
(SVM-Rad)
Linear
(SVM-Lin)
Polynomial
(SVM-Poly)

C parameter, gamma

Multilayer
Perceptron

FNN No of layers:7, Dropout:20%,
Activation:relu, softmax, Opti-
mizer=SGD, Loss = Categorical
cross-entropy

Convolutional
Neural Network

CNN-1D
CNN-2D

No of layers: 6 (1-D)/7 (2-
D) , No. of filters: 64/32(1-
D),64/32/16 (2-D), Kernel Size
= 2 × 2 (1-D), 3 × 3 (2-
D), Padding=same, optimizer=
Adam, Dropout:20%

Long Short Term
Memory

LSTM No of layers: 4 , output dimen-
sion= 50,optimizer= Adam

we inspect both feedforward Multilayer Perceptron Models

(MLP) and Convolutional Neural Networks, with 1-D and 2-

D filters (CNNs) for categorization. As sensed data is time

series based, we have also included Long Short-Term Memory

(LSTM) network for typifying.

After training and fine tuning our chosen classifiers with

controlled environment data, we record performance of each

classifier based on different size sample window and sensor

placement. While training, we have scaled, normalized and

divided the balanced dataset into training, test and validation

sets (80%, 10% and 10% respectively). For better evaluation

and to ensure representation from each group, we have implied

stratified 10 fold cross validation by tuning classifiers to their

best hyper parameters using Gridsearch.

For identifying primary source in a multi-source envi-

ronment, we have blended RGB values light sources and

observe whether our classifiers can identify the primary source.

While mixing, we have made sure that the RGB values

from second/interfering source never goes past values from

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on January 09,2023 at 07:47:22 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 5: RGB observations (x-axis: sample no., y-axis: raw
RGB values) along with lux intensities (x-axis: sample no.,
y-axis: lux/m2) from multiple sources, LED was set as
primary and CFL as secondary source. Observed outputs
deviate from simple addition

primary source, as classifier is expected to determine the

major contributor between/among sources. In previous work

like [19], only constructive interference has been considered

as the consequence of overlapping. For further investigation,

we place two light sources near the sensor and compare the

resultant with simple theoretical addition. We find that they

differ by a large margin, both in RGB and in lux domains

(figure 5).

Based on the phase difference resulting from positioning of

both sources at sensor point, a numerous blending ratio is

possible. Variety of mixture represents blending of constant

positioned sources at different sensor placement or positioning

of sources at different locations, sensed at the same spot.

However, highest possible deviations are amalgamation of

identical and opposite phases. As our goal was to testify our

classifiers, we have only added those extreme cases that can

lead into inaccuracy with the highest probability.

Now we deploy our sensor in real life testbeds and record

performances. Based on our investigation, we have seen that

even after training the best model with fine tuning and wide

ranging examples, performance has deteriorated substantially,

especially in recognizing unfamiliar artificial sources in some

observations or at unexpected events like source transitions

and human movements.

With limited amount of data, machine learning models tend

to over-fit and become problematic for non-linear classifica-

tion. However, at the same time, it is unrealistic to include

all the light source available in the market in our training set.

To surpass this limitation, we have generated equal number

of synthetic examples of captured data and based on current

data distribution by utilizing TimeGAN. GAN generated time

series RGB examples can generate realistic data for superior

segregation of different light classes by adding excluded exam-

ples from source distribution. Light source classifiers is then

expected to perform with higher accuracy in an environment

containing unfamiliar sources. Figure 6 demonstrates distribu-

tion of first two principal components of real and synthetic

examples generated using TimeGAN.

Fluctuation during data acquisition may occur arbitrarily

and for unknown duration, where sensors may receive transient

rather than imminent information. When our sensors records

zero RGB values, it is practically impossible to detect the

source type. But if it senses non-zero values even for some

Fig. 6: Principal Components Comparison between Real
(left) and Generated Synthetic Examples (right) using
TimeGAN

duration, we may utilize that information for source classifica-

tion. To familiarize our classifier models with those events, we

have designed filters of different window sizes and randomly

implemented them within acquisition timeframe (shown in

figure 7). These examples are also expected to familiarize our

classifiers with scenarios where switch on/off is non-periodic

or presence of sudden obstacles in between source and sensor.

Fig. 7: Applying filters of different sizes on a LED source
to capture fluctuations in a 25 RGB sample window

To the best of our knowledge, TimeGAN method along

with filter designing have been implemented for the first time

for light source classifying. After including both filtered and

synthetics examples in our training set, a comparison between

classification accuracy has been presented between limited and

extended training set.
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Fig. 8: An overview of the workflow

VI. IMPLEMENTING LPCSB

LPCSB is a printed circuit board (PCB) that interfaces

TCS3475 sensor and is regulated with nRF51822 micro con-

troller. It is qualified to communicate over 2.4GHz Bluetooth

Low Energy (BLE), flexible enough to operate in two way

(transceiver mode) or one way (advertising) mode, as needed.

System has a dimension of roughly 24mm× 39.5mm, suited

to get fit and comfort as wearable devices. For low power

consumption and simplification, nRF51822 micro controller

components were limited to only clock circuits, 3.3 V regula-

tory circuitry and power supply connector in the final design.

Micro Reach Xtend (FR05-S1-N-0-110) Chip Antenna was

assembled to establish communication and fit in PCB, plus

USB connector for supplying power. Fully assembled LPCSB
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Fig. 9: Fully assembled LPCSB

TABLE II: Approximate cost of major LPCSB components

Component Price in Bulk
20 board/panel 2-layer standard thickness PCB $3.8
NRF51822QF Bluetooth® 4.0/2.4 GHz RF SoC $3.0
TCS3472 RGB + Clear Color Sensor $2.0
MicroReach (FR05-S1-N-0-110) Chip Antenna $1.8
EPSON-FA-128 (MHz RANGE CRYSTAL UNIT) $0.40
MAX887EZK33+T 3.3V Linear Regulator $0.40
BAL-NRF01D3 Transformer Balun $0.20

can be seen in Figure 9.

The power regulation section consisted of a micro-USB B-type

connector, a green LED indicator circuit, MAX887EZK33+T

Low-Dropout 300mA 3.3V Linear Regulator, and several

bypass capacitors meant to help stabilize the input / output

voltage and current in case of supply fluctuations. With

the help of BAL-NRF01D3 transformer balun for impedance

matching and "LightBlue" phone app for monitoring, we

have tested BLE radio transmitter inside nRF51822. Using

the "nrf5x-base" and "Adafruit-TCS34725" GitHub reposito-

ries as design references, we have instructed the TCS34725
through nRF51822 to measure the ambient light and send

the resulting values. Red-filtered, green-filtered, blue-filtered,

and clear (unfiltered) diodes data of TCS34725 sensor is

stored as a 16-bit value, split between two registers. We

have further calculated the color temperature of the light in

degrees Kelvin and the lux in lumens per square meter, using

formula provided by Adafruit. Figure 10 represents energy

intake per cycle of LPCSB, where sensor reading is followed

by a BLE advertisement event. If we set parameters to classify

source within a minute, avg current drawn is per sampling is

around 0.22mA and the system can operate upto 45 days with

conventional 3.3V Lithium batteries without replacement. For

mass deployment, as shown in Table II, LPCSB is notably

cheaper than mini spectrometers .

Fig. 10: LPCSB with sensing and advertisement events

VII. EVALUATION

We have analyzed prediction accuracy in different back-

ground and have recorded mean values of classifying accuracy

(with standard deviations). As initial accuracy were high

with only using RGB data, we have discarded clear value,

lux intensity or color temperature readings for classification.

Although artificial lighting landscapes do not change very

often at indoor, classifiers should be robust enough there to

classify under inexperienced screenplays with factual mishaps.

We start with the ideal scenarios to fix parameters for indoor

deployment and then progress with evaluating non-ideal inci-

dents with the settled values. We have illustrated the findings

mostly with violin plots, which depict distributions of numeric

data through density curves on the both sides of the mean

value. Accuracy values exceeding 100% in those plots were

trimmed.

A. Prediction in known scenario

Upper plot of Figure 11 illustrates variability of mean accu-

racy for different classification techniques with varying num-

ber of samples. Observation reveals accuracy is not linearly

proportional with number of observed RGB samples. The best

average result is achieved with 50 samples, although average

accuracy with 10 and 25 samples were also near 90%. Lower

Fig. 11: Performance comparison among ML and NN
methods for LPCSB at indoor where training windows
were varied from 10 to 125 samples: 50 samples triggers
the best performance and KNN was the best performer

plot of Figure 11 represents a comparative analysis among

classifiers, trained with different sample sizes. It uncovers

that overall performance of ML algorithms is better than

NNs at ideal and known scenario. K-Nearest Neighbor (KNN)

triumphs for generating highest and most consistent accuracy

among all.

To carry on with KNN, our goal is to find the sweet

spot for balancing number of samples with accuracy. After

observing KNN accuracy with varying samples window size,

we conclude 25 samples window exhibits the combination of

highest accuracy and lowest standard deviation. We continue

our analysis with 25 samples window for both capturing the

transient and stable state of radiation and accommodating

minimum number of samples at packet loss scenarios.
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B. Placement of sensor

Our goal was to observe if we had the liberty of deploying

sensor at any distance from the source indoor, where should

we place it for yielding maximum identifying accuracy. We

place LPCSB at 5 different distances for Inc, CFL and LED

bulbs, starting from 50 cm to 150 cm to observe whether

placement of sensor plays any role in classifiers’ performances.

Our analysis shows placing sensor at 100 cm can detect the

background source with maximum accuracy (figure 12).

Fig. 12: Variation in accuracy vs Sensor placement dis-
tance: 100cm yields the maximum mean accuracy

Now, we focus on non-ideal situations with known

sources/scenarios and testify classifiers performance by setting

up 25 samples window length. For investigation, as before, we

include 80% examples in our training set to familiarize our

classifier and 10% each for validation and test sets.

C. Typifying in multiple source environment

To fabricate multi source environment, RGB values from

second source was mixed at different amount, varying from

20% to 80%, of the intensity of the primary source. High-

est possible deviations were included for analysis (through

addition and subtraction of RGB values of primary and sec-

ondary sources) and mixing signals from all possible combi-

nations (LED/CFL, LED/Sunlight, Sunlight/LED+CFL etc.).

Our study reveals although classifiers accuracy declines with

increasing mixture ratio but overall performance do not fall

significantly in multi source environments (figure 13).

Fig. 13: Overall accuracy at multi source environments
where secondary source intensities were varied in between
20% to 80% of the primary

D. Identifying in presence of random noise

In real world, nearby elements can act as a noise source by

reflecting particular component of light which can escalate

or descend the sensed values. However, by placing RGB

reflecting elements nearby, we find that finally recorded value

contain very were small interference. We vary the influence

randomly from 0% to 5% of maximum RGB values (without

noise) and enlist the performances (figure 14). As recorded,

Fig. 14: Overall accuracy based on randomly varying RGB
values in between 0% to 5% of the major source intensity

accuracy decreases with increasing intensity of perturbations.

All inclusively, NN based classifiers can withstand turbulence

better than ML based classifiers. Random forest performs

best among ML algorithms (mean accuracy 84.46%) where

accuracy score of KNN was close to that (mean accuracy

83.17%).

E. Detection Precision in smart environment

For source detection in smart environments, we vary the

on/off duration of sources and also the cutoff points, from

20% to 80% of the maximum value. Final RGB signal patterns

had major shifts from initial pattern based on threshold. Now

Fig. 15: Overall accuracy in primary source detection at
smart environments

evaluating the performances to identify the altered patterns,

we inspect that LSTM is the best performer (figure 15). If

we enlarge the accuracy in KNN case based on threshold, we

can see that accuracy of classification decreases with lowering

threshold values (figure 16). So balancing threshold is a pre-

requirement for desired accuracy in smart environments.

Fig. 16: Declining detection accuracy of KNN classifier was
observed with lower cutoff settings
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Fig. 17: RGB signals in test-beds with accuracy, circles
point placement of LPCSB (x-axis:sample no., y-axis: hex
value)

F. Real world deployment

Here, we deploy our board in real world settings. For

classification, we have singled out KNN as our classifier, for

exhibiting the most consistent performance in all scenarios and

trained it with all ideal/non-ideal examples from controlled

atmosphere. We conduct 3 experiments at 3 different test

beds: (1) Household, (2) Lab environment-1 and (3) Lab

environment-2. All the test were done with completely un-

known artificial bulbs. Experiments included single source,

mixed light source and arbitrary switching of bulbs scenarios

(figure 17).

G. Analysing misidentified examples

After analysis, we observe that classification accuracy has

been degraded unexpectedly. Classifier got confused during

few transition events. We also observe that the faulty predic-

tions were not common for any particular light. Moreover, for

artificial lamps, a single source at different distances have been

typified as different classes. While detecting RGB spectrum

of sunlight during sunrise and sunset, classifier has been

misguided.

Now, we retrain our KNN classifier with extended training

set and re-record the accuracy. Our investigation reveals that

performance of KNN classifier has been significantly improved

(figure 18), especially in few cases of sudden movements

and random switching between sources (figure 19). Even with

elevated training, we observed examples that were failed to

get correctly identified. A few of them have been listed below

(figure 20). Again, no single pattern of mis-classification was

discovered.

Fig. 18: Accuracy reveals KNN with extended training set
exhibits superior performance in unfamiliar environments

Fig. 19: Correct Predictions with extraneous training set
(x-axis: sample no., y-axis:hex value) : During Switch-
over (left):Prev-Led, Now-CFL. During random movement
(right):Prev-CFL, Now-Sunlight

(a) (b)

(c) (d)

Fig. 20: Miscategorized examples with Incandescent
("work white", 150 W),Led ("warm yellow light", 40 W)
and CFL ("T9, 6400K", 22 W) bulbs (x-axis: sample no.,
y-axis: hex value): (a) Inc. as Sunlight (b) Led as Sunlight
(c) Led as Inc. (d) CFL as Led

VIII. DISCUSSION

In this experiment, we have used TCS3475 sensor with 1X

ADC gain with an integration time of 700 ms, which allows

us to read color values up to value 65535. Based on the place

of interest for source detection, color sensor parameters like

integration time and ADC gain settings can be modified for

increased sensitivity at low light levels. Sensors can be preset

only to record data if there is any certain amount of change in

value and discard values that are below threshold. Sampling

and Advertising rate can also be adjusted for better power
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management on the transmitting side. However, if the rate is

too high and number of samples for identification are pre-

fixed, it may fail to capture amount of variation needed for

classification. On the other hand, too low sampling rate will

result in unnecessary delay in classification process. Moreover,

color sensors like TCS3475 has a limitation regarding integra-

tion time and highest value that can be recorded for a color

channel. When running the control tests, we did not test light

bulbs with colored glass in detail or rotating search lights.

As BLE technology has range limitation, on board storing

and processing can be beneficial to minimize packet loss but

conceivably will require higher memory and processing power.

IX. CONCLUSION AND FUTURE WORK

For accurate identification of light exposure, light sensors

need to encounter all the scenarios we have discussed here.

What we have monitored is that a single classifier is not the

best performer in all the landscapes. In addition, inaccurate

identification was not bulb specific. For indoor deployment,

placement of sensors, along with the number of samples

considered for source identification play pivotal roles. With

KNN, sensing 25 samples at a distance of 100 cm achieves

accuracy up to 99.30% in constrained cases, compare to 100%

in identifying indoor light among LED, CFL, Inc. and Halo-

gen [19] and 100% in distinguishing among Warm Led, Cool

Led, Halogen, CFL and solar simulator [24] (in both the cases,

architectures were trained with only one example of each type

with varied lux intensities). Recognition of primary source in

a multi-source environment, classifiers’ mean accuracy was

98.96%, compare to 100% in [19] and 85.4% in [24]. However,

after adding filtered and synthetic data, our highest mean

accuracy was 90.25% for unfamiliar synopses, compare to

only 62.5% in [19]. Training classifier with limited data set

may fall short for classification in real world setting, where

adding synthetic and filtered data can elevate the performance.

Finally, interference like accidental movement can hit hard the

performance, so stable environment is advantageous.

Our future endeavors include readjusting sensor parameters

that further minimize energy intake for daylong operation,

keep high accuracy intact and help us gathering knowledge

regarding primary source around the environment as quickly

as possible. On board classification approach can be embraced

for developing self-contained systems to store, analyze and

publish outcomes as a package like smart watch. We also

plan to conduct time series feature based identification which

may require higher memory and power for calculation but

can identify primary source in nearby atmosphere with higher

accuracy than utilizing only raw RGB values. Mis-classified

and adversarial examples can be included in the training set

for upgrading robustness.
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